Способы найти корень уравнения — правила вычисления.
Уравнение – математическое выражение, содержащее одну или несколько неизвестных. Решить уравнение – значит найти такие значения аргументов, при которых достигается равенство левой и правой частей выражения (заданных функций). Найденные значения называются корнями уравнения.
В математике выделяют линейные, квадратные и кубические уравнения. Для того чтобы найти корень уравнения определенного типа используются различные методы.
Линейное уравнение
Выражение вида а*х=b называется линейным уравнением. В нем а – коэффициент при переменной, b – свободный член. При его решении может быть три случая, в которых:
- а 0. Корень в этом случае вычисляется по формуле: x=b/a. Например, дано уравнение x+3=9-2*x. Выражения с «Х» переносятся в одну сторону, а свободные члены – в другую: х+2*х=9-3, или 3*х=6. Тогда х=6/3, х=2.
- а=0, b=0. Уравнение примет вид 0*х=0. Это равенство будет верным при любом значении «Х». Значит, корнем уравнения будет любое действительное число.
- а=0, b 0. Получится выражение 0*х=b, для которого не существует корней.
Квадратное уравнение
Уравнение вида называется квадратным (а 0). «А» и «B» называются коэффициентами, а «С» – свободным членом. Количество корней зависит от значения дискриминанта, который вычисляется по формуле . В том случае, если:
- D<0 – для уравнения не существует корней.
- D=0 – есть один корень, который находится по формуле: x=-b/(2*a).
- D>0 – существует два корня, определяемые следующим образом: Например, дано уравнение 3*х2-2*х-5=0. Дискриминант D=4-4*3*(-5)=64. Будет два корня.
Кубическое уравнение
Выражение вида называется кубическим уравнением. Оно может обладать несколькими корнями, для вычисления которых нужно:
- Найти один из корней, который представляет собой делитель свободного члена «d» путем подстановки всех возможных делителей, пока левая часть выражения не станет равной нулю.
- Разделить исходное уравнение на найденный корень, в результате чего выражение будет приведено к виду квадратного.
- Найти корни полученного уравнения. Например, дано уравнение . Делители свободного члена 12 – ±2, ±3, ±4, ±6, ±12. Левая часть принимает значение, равное 0 при х=2. Значит 2 – первый корень. Затем нужно разделить исходное выражение на (х-2). Получится квадратное уравнение . Его корнями будут числа..
Другие способы
Помимо алгебраического вычисления необходимых значений можно воспользоваться:
- Бесплатным онлайн-калькулятором (allcalc.ru).
- Графическим способом, когда строится график функции, точки пересечения которого с осью «Х» будут корнями уравнения.
В математике встречаются разнообразные уравнения. Их всегда нужно решать, то есть искать все числа, которые сделают его верным равенством. Пути поиска решений определяются первоначальным видом уравнения. От него же будет зависеть и количество верных значений переменной, которые обозначаются, как корень уравнения. Это число может варьироваться от нуля до бесконечности.